Chapter 1 (Part 3)

Single phase AC voltage controllers By Dr. Ayman Yousef

Single-phase full-wave AC voltage controllers with R-L load

- The thyristor T_1 is forward biased during the positive half cycle of input supply and conduct when suitable pulse applied on its gate $\omega t = \alpha$.
- The thyristor T_2 is forward biased during the negative half cycle of input supply and conduct when suitable pulse applied on its gate $\omega t = \pi + \alpha$.

Single-phase full-wave AC voltage controllers with R-L load

- Due to the inductance in the load, the load current i_o flowing through T_1 would not fall to zero at $\omega t = \pi$, when the input supply voltage starts to become negative.
- The thyristor T_I will continue to conduct the load current until all the inductive energy stored in the load inductor L is completely utilized and the load current through T_I falls to zero at $\omega t = \beta =$ extinction angle.

• The thyristor T_1 conducts from $\omega t = \alpha \text{ to } \beta$. The conduction angle of T_1 is $\delta = (\beta - \alpha)$, which depends on the delay angle α and the load impedance angle φ .

Single-phase full-wave AC voltage controllers with R-L load

In case of $\beta > \pi + \alpha$

- The problem, when (T_2) is fired at $\omega t = \pi + \alpha$, while (T_1) is still conducting due to load inductance, (T_2) cannot be turned on. This will result in asymmetric output voltage and current waveforms.
- The solution of this problem, continuous gating signals with a duration of $(\pi \alpha)$ should be used .
- Another problem, when the current in (T_1) falls to zero, (T_2) would be turned on. But, a continuous gating signal results in high switching losses of thyristors and requires a larger isolating transformer in the gating circuit.
- In practice, a train of pulses with short durations, are normally used to overcome these problems.

Waveforms of single phase full wave ac voltage controller with RL load

In case of $(\alpha < \phi)$

The load voltage and current can be sinusoidal if the firing delay angle (α) is less than the load angle (φ).

In case of $(\alpha > \phi)$

- If (α) is greater than (ϕ) , which is usually the case, the load current would be discontinuous and non-sinusoidal.
- In discontinuous load current operation occurs for $\alpha > \varphi$ and $\beta < (\pi + \alpha)$ i.e., $(\beta - \alpha) < \pi$, conduction angle $< \pi$.

Waveforms of single phase full wave ac voltage controller with RL load for a > φ.

The load current i_0 (thyristor current i_{T1})

 $v_s = V_m \sin \omega t$ instantaneous value of the input supply voltage

Assuming that thyristor (T_1) is triggered at $\omega t = \alpha$, The load current which flows through the thyristor T_1 during $\omega t = \alpha$ to β can be found from the equation:

 $L\left(\frac{di}{dt}\right) + Ri_1 = V_m \sin \omega t$

The solution of the above differential equation gives the general expression for the thyristor (load) current, during this period, is in the form:

 $i_0 = i_{T1} = \frac{V_m}{Z} \sin(\omega t - \phi) + A_1 e^{\frac{1}{\tau}}$ Where $V_m = \sqrt{2}V_s$ = maximum or peak value of input supply voltage.

$$Z = \sqrt{R^2 + (\omega L)^2} = \text{Load impedance.} \quad \phi = \tan^{-1} \left(\frac{\omega L}{R}\right) = \text{Load impedance angle (power factor angle of load).}$$
$$r = \frac{L}{R} = \text{Load circuit time constant.}$$
Power Electronics II

• The value of the constant A_1 can be determined from the initial condition. i.e. initial value of load current $i_0 = 0$, at $\omega t = \alpha$. Hence from the equation for I_o equating i_o to zero and substituting $\omega t = \alpha$

$$i_{O} = i_{T1} = \frac{V_{m}}{Z} \sin(\omega t - \phi) + A_{1}e^{\frac{-R}{L}t}$$

tronics II Yousef

• Substituting the value of constant A_1 from the above equation into the expression for i_o , we obtain

$$i_{0} = i_{T1} = \frac{V_{m}}{Z} \sin(\omega t - \varphi) - e^{\frac{R}{L}(\alpha/\omega - t)} \left[\frac{V_{m}}{Z} \sin(\alpha - \varphi) \right], \quad \text{Where } \alpha \le \omega t \le \beta$$

$$i_{0} = i_{T1} = \frac{\sqrt{2}V_{s}}{Z} \left\{ \sin(\omega t - \varphi) - \sin(\alpha - \varphi) e^{\frac{R}{L}(\alpha/\omega - t)} \right\}$$
Power Electron Dr. Avman

• The extinction angle β , depends upon the load inductance and is defined as the value of ωt at which the load current i_o falls to zero and T_I is turned off, and it can be estimated by using the condition that $i_o = 0$, at $\omega t = \beta$

$$i_{O} = 0 = \frac{V_{m}}{Z} \left[\sin(\beta - \phi) - \sin(\alpha - \phi) e^{\frac{-R}{\omega L}(\beta - \alpha)} \right] \qquad \text{As } \frac{V_{m}}{Z} \neq 0 \text{ we can write}$$
$$\left[\sin(\beta - \phi) - \sin(\alpha - \phi) e^{\frac{-R}{\omega L}(\beta - \alpha)} \right] = 0 \qquad \text{Image of } \sin(\beta - \phi) = \sin(\alpha - \phi) e^{\frac{-R}{\omega L}(\beta - \alpha)}$$

- The extinction angle β can be determined from this equation by using the iterative method of solution (trial and error method).
- In the exponential term the value of α and β should be substituted in radians.
- After β is calculated, we can determine the thyristor conduction angle δ .

Conduction angle δ increases as α is decreased for a known value of β .

 $\delta = (\beta - \beta)$

- Maximum thyristor conduction angle $\delta = (\beta \alpha) = \pi$ radians = 180° for $\alpha \le \varphi$.
- In case of $\alpha > \varphi$, the type of operation will be discontinuous load current, and we get $\beta < (\pi + \alpha)$, and greater than π radian or 180°. Then, the range of extinction angle β

$$\pi < \beta < (\pi + \alpha)$$

Power Electronics II Dr. Ayman Yousef

Analysis of Single phase full wave AC voltage controller with inductive load

Conduction Angle δ

RMS Output Voltage

$$V_o = \sqrt{\frac{2}{2\pi} \int_{\alpha}^{\beta} V_m^2 \sin^2 \omega t. d(\omega t)}$$

$$V_o = \frac{V_m}{\sqrt{2}} \sqrt{\frac{1}{\pi} \left[\left(\beta - \alpha\right) + \frac{\sin 2\alpha}{2} - \frac{\sin 2\beta}{2} \right]}$$

The Average Thyristor Current

$$I_{T(Avg)} = \frac{1}{2\pi} \left[\int_{\alpha}^{\beta} i_{T_{i}} d(\omega t) \right]$$
$$I_{T(Avg)} = \frac{V_{m}}{2\pi Z} \int_{\alpha}^{\beta} \left[\sin(\omega t - \varphi) - \sin(\alpha - \varphi) e^{\frac{R}{L}(\alpha / \omega - t)} \right] d(\omega t)$$

Power Electronics II Dr. Ayman Yousef

Analysis of Single phase full wave AC voltage controller with inductive load RMS Thyristor Current I_{T(RMS)} $i_{\mathcal{O}} = i_{T1} = \frac{\sqrt{2}V_s}{z} \left\{ \sin(\omega t - \varphi) - \sin(\alpha - \varphi) e^{\frac{R}{L}(\alpha/\omega - t)} \right\}$ $I_{T(RMS)} = \sqrt{\left[\frac{1}{2\pi}\int_{-\infty}^{\beta} i_{T_1}^2 d(\omega t)\right]}$ $I_{T(RMS)} = \sqrt{\left|\frac{1}{2\pi}\int_{\alpha}^{\beta} \left[\frac{\sqrt{2}V_{s}}{z}\left\{\sin\left(\omega t - \varphi\right) - \sin\left(\alpha - \varphi\right)e^{\frac{R}{L}(\alpha/\omega - t)}\right\}\right]^{2}}d(\omega t)$ $I_{T(RMS)} = \frac{V_s}{Z} \sqrt{\frac{1}{\pi_{\alpha}}} \left\{ \sin(\alpha t - \varphi) - \sin(\alpha - \varphi) e^{\frac{R}{L}(\alpha/\omega - t)} \right\}^2 d(\alpha t)$

RMS Output Current

$$\mathbf{I_o} = \sqrt{(\mathbf{I^2}_{T(\text{rms})} + \mathbf{I^2}_{T(\text{rms})})} \qquad \qquad \mathbf{I_o} = \sqrt{2} \ \mathbf{I_{T(rms)}}$$

Ex .3: A single-phase full-wave AC voltage controller supplies an RL load. The supply rms voltage is 120 V, 60 Hz. The load has R=2.5W and L=6.5 mH, the firing delay angles of thyristors are equal: $\alpha_1 = \alpha_2 = \pi/2$.

Determine:

- (a) the conduction angle of the thyristor T_1
- (b) the rms output voltage
- (c) the rms thyristor current
- (d) the average thyristor current
- (e) the rms output current
- (f) the input power.

Solution

 $V_S = 120 V$ f = 60 Hz R = 2.5 Ω L = 6.5 mH $\alpha_1 = \alpha_2 = 90^{\circ}$

 $\varphi = \tan^{-1} (\omega L/R) = \tan^{-1} (2\pi x 60x 6.5x 10^{-3}/2.5) = 44.4^{\circ}$

conduction angle of the thyristor T₁

$$\delta = (\beta - \alpha)$$

• In order to determine the conduction angle δ , firstly, we must find the extinction angle β from the given equation

$$\sin(\beta-\phi)=\sin(\alpha-\phi)e^{\frac{-R}{\omega L}(\beta-\alpha)}$$

$$\sin(\beta-\phi)=\sin(\alpha-\phi)e^{\frac{-R}{\omega L}(\beta-\alpha)}$$

• By solving this equation numerically using trial and error method, and because $\alpha > \varphi$, the extinction angle (β) can be determined with the given range

$$\pi < \beta < (\pi + \alpha) \qquad \beta \cong 220^{\circ}$$

Then,
$$\delta = \beta - \alpha = 220^\circ - 90^\circ = 130^\circ$$

$$V_{o} = \frac{V_{m}}{\sqrt{2}} \sqrt{\frac{1}{\pi} \left[(\beta - \alpha) + \frac{\sin 2\alpha}{2} - \frac{\sin 2\beta}{2} \right]}$$
$$V_{o} = V_{s} \left[\frac{1}{\pi} \left\{ (\beta - \alpha) + \frac{\sin 2\alpha}{2} - \frac{\sin 2\beta}{2} \right\} \right]^{\frac{1}{2}}$$
$$V_{o} = 120 \left[\frac{1}{\pi} \left\{ (220 - 90) + \frac{\sin 2x90}{2} - \frac{\sin 2x220}{2} \right\} \right]^{\frac{1}{2}} = 90.25v$$

rms thyristor current

$$I_{T(RMS)} = \frac{V_{s}}{Z} \sqrt{\frac{1}{\pi} \int_{\alpha}^{\beta} \left\{ \sin(\omega t - \varphi) - \sin(\alpha - \varphi) e^{\frac{R}{L}(\alpha/\omega - t)} \right\}^{2}} d(\omega t)$$

average thyristor current

$$I_{T(Avg)} = \frac{V_m}{2\pi Z} \int_{\alpha}^{\beta} \left[\sin(\omega t - \varphi) - \sin(\alpha - \varphi) e^{\frac{R}{L}(\alpha/\omega - t)} \right] d(\omega t)$$

rms output current

$$I_o = \sqrt{2} I_{T(rms)}$$

input power factor

$$PF = \frac{P_o}{VA}$$

$$P_{o} = I_{o}^{2} x R \qquad VA = V_{s} x I_{s}$$

Harmonic analysis of output voltage and current with RL load

rms output voltage

$$V_o = \frac{V_m}{\sqrt{2}} \sqrt{\frac{1}{\pi} \left[\left(\beta - \alpha\right) + \frac{\sin 2\alpha}{2} - \frac{\sin 2\beta}{2} \right]}$$

rms thyristor current

$$I_{T(RMS)} = \frac{\mathbf{V}_{s}}{Z} \sqrt{\frac{1}{\pi} \int_{\alpha}^{\beta} \left\{ \sin(\omega t - \varphi) - \sin(\alpha - \varphi) e^{\frac{\mathbf{R}}{\mathbf{L}}(\alpha/\omega - t)} \right\}^{2}} d(\omega t)$$

rms output current

$$I_{o} = \sqrt{2} \ I_{T(rms)}$$

Harmonic analysis of output voltage and current with RL load

The fundamental component of load voltage

$$a_1 = \frac{V_m}{2\pi} [\cos 2\alpha - \cos 2\beta]$$

$$\vartheta_1 = \tan^{-1} \frac{a_1}{b_1}$$

$$b_1 = \frac{V_m}{2\pi} [2(\beta - \alpha) + \sin 2\alpha - \sin 2\beta]$$

The ⁿth component of load voltage

$$a_n = \frac{V_m}{\pi} \left\{ \frac{\cos(1+n)\alpha - \cos(1+n)\beta}{(1+n)} + \frac{\cos(1-n)\alpha - \cos(1-n)\beta}{(1-n)} \right\}$$
$$b_n = \frac{V_m}{\pi} \left\{ \frac{\sin(1-n)\beta - \sin(1-n)\alpha}{(1-n)} - \frac{\sin(1+n)\beta - \sin(1+n)\alpha}{(1+n)} \right\}$$

$$\vartheta_n = \tan^{-1} \frac{a_n}{b_n}$$

$$n = 3, 5, 7, \ldots,$$

Harmonic analysis of output voltage and current with RL load

Active power

$$P = V_1 I_1 \cos(\vartheta_1 - \varphi_1) + V_3 I_3 \cos(\vartheta_3 - \varphi_3) + \cdots + V_n I_n \cos(\vartheta_n - \varphi_n)$$

$$P=I_{\mathbf{0}}^{\mathbf{2}} R$$

$$P = (l_1^2 + l_3^2 + \dots + l_n^2) R$$

Reactive power

$$Q_{\mathbf{1}} = V_{\mathbf{1}} I_{\mathbf{1}} \, \sin(\vartheta_{\mathbf{1}} - \varphi_{\mathbf{1}})$$